
Hysteresis and mode coupling in capillary bridge oscillations: Observations

Wei Wei,* David B. Thiessen, and Philip L. Marston†

Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814, USA
�Received 31 May 2005; published 29 December 2005�

We investigate nonlinear axisymmetric oscillations of capillary bridges in a Plateau tank of density-matched
liquids. The liquids are selected to have unusually small kinematic viscosities. Large amplitude oscillations are
excited by applying oscillating Maxwell stresses. The modal frequency response is measured by incrementing
the excitation frequency. In a narrow range of frequencies the response depends on the direction �downward or
upward� of the increments in a way consistent with a lumped-parameter model of hysteresis for weakly
damped oscillators having a mode-softening nonlinearity. The bridge length is selected so that the third
harmonic is the natural frequency of a higher-order capillary mode and that mode also exhibits hysteresis.
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The dynamics of capillary bridges and closely related sur-
face tension dominated fluidic systems have been investi-
gated for over 150 years �1,2�. Cylindrical bridges between
two solid supports have been investigated because of diverse
applications and because of the subtleties of the stability and
dynamics of bridges �1–13�. The dynamics of a nearly cylin-
drical liquid bridge is strongly influenced by the length of the
bridge. In the absence of body forces, capillarity usually
causes varicose perturbations of cylindrical liquid columns to
become unstable when the perturbation wavelength exceeds
the circumference �1,2,13,14�. This Rayleigh-Plateau insta-
bility has been suppressed by using electrostatic or acoustic
surface stresses to modify the low-amplitude dynamics of
bridges �11,15,16�. The oscillatory dynamics of finite ampli-
tude perturbations is predicted to be complicated by nonlin-
ear hysteresis �9� and mode coupling �10�. Such complica-
tions will be important for anticipating the responses of
capillary systems to vibration �3–12�. Experiments on the
oscillatory dynamics of capillary bridges having negligible
body forces are ordinarily hampered by the limited duration
of rocket or aircraft-based low effective-gravity platforms
�7,15,16� or by complications introduced by forming the
bridge in a Plateau tank of density matched immiscible liq-
uids �4,11,12�. Viscous dissipation of modes is much greater
for Plateau tank bridges than for bridges in air. The short
duration of low-gravity measurements and the enhanced dis-
sipation in Plateau tanks make it difficult to investigate non-
linear hysteretic behavior �9�. We show here that with a suit-
able choice of Newtonian liquids, dissipation in a Plateau
tank can be reduced sufficiently to facilitate direct observa-
tion of hysteresis and nonlinear coupling of bridge modes.
While mode-softening hysteretic capillary oscillations of
pendant �17,18� and levitated �19� drops have been previ-
ously reported, our observations of hysteretic capillary oscil-
lations appear to be the first describable by an elementary
lumped-parameter model �20�. The dynamical region exam-
ined here is intermediate between the domains of linear
analysis and capillary pinch off �21�.

Bridge modes are designated by �n ,m� where n denotes
the number of axial half wavelengths and m is an azimuthal
index that is zero for varicose modes �11,12�. The slender-
ness of the bridge is designated by S=L /2R where L is the
bridge length and R is the support radius, which corresponds
to the static bridge radius for an ideal bridge. Figure 1 shows
the shapes of the �3,0� and �5,0� modes computed for S
=2.71, which is the slenderness value used in our experi-
ments. These shapes are computed from a linearized inviscid
model �4� where, as in our experiments, the contact lines are
pinned to a disk of radius R at each end. Nicholas and Vega
�9� predict that as a consequence of nonlinearity, nearly in-
viscid liquid bridges subjected to axial vibrations will exhibit
a hysteresis in the response of the �2,0� mode. In the experi-
ments described here, the �3,0� mode of an electrically con-
ducting horizontal liquid bridge is excited using oscillating
electrostatic fields instead of by vibrating either disk.

It is convenient to use a lumped-parameter model of
weakly nonlinear bridge oscillations generalized from the
Duffing model commonly used for the �2,0� mode �5–7�. As
explained below, we have selected the slenderness S such
that the amplitudes of the �3,0� and �5,0� modes are signifi-
cantly coupled. The corresponding instantaneous amplitudes
are denoted by x�t� and y�t�, respectively, where t denotes the
time. The profile and frequency of the applied stress are such
that the �5,0� mode is weakly excited in comparison to the
�3,0� mode and all modes having m�0 have negligible am-
plitudes. Considering the symmetry of the �3,0� and �5,0�
modes, when y is small the important terms of the potential
energy related to the deformation of the bridge should have
the form
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FIG. 1. �a� The �3,0� mode shape and its shape after half of its
oscillation period. �b� The �5,0� mode shape and its shape after half
of its oscillation period. These are computed from Sanz �4�.

PHYSICAL REVIEW E 72, 067304 �2005�

1539-3755/2005/72�6�/067304�4�/$23.00 ©2005 The American Physical Society067304-1

http://dx.doi.org/10.1103/PhysRevE.72.067304


U = �1/2�k3x2 + �1/3��3x3 + �1/4��3x4 + �35x
3y + �1/2�k5y2,

�1�

where k3 and k5 are modal spring coefficients, �3�0 and �3
are coefficients related to softening of the �3,0� mode and �35
is a mode coupling term. Neglecting a term ��35x

3y since y
is small, the modal restoring force for the �3,0� mode be-
comes Fx=−k3x−�3x2−�3x3. When the bridge is driven with
an external modal stress at a frequency � the modal equation
becomes

xtt + 2�xt + �3
2x = − �x2 − �x3 + fE cos �t , �2�

where fE is proportional to the external drive, �3 is the in-
finitesimal amplitude natural frequency, � is the damping,
�=�3 /M3, �=�3 /M3, where M3 is the modal mass of the
�3,0� mode. The analogous expression for the �2,0� mode
omits the term proportional to � as a consequence of the
mode symmetry �5–7�. As with the �2,0� mode, the �3,0�
mode is expected to soften at large amplitudes so that
��0. The resulting steady-state amplitude b of the �3,0�
mode is �20�

b2��	 − 
b2�2 + �2� = fE
2/4�3

2, �3�

where 
= �3� /8�3�− �5�2 /12�3
3�, 	=�−�3, and it is as-

sumed that �� /�3�2�1 so that a damping correction to the
mode frequency is negligible. A feature of this cubic equa-
tion in b2 is that when � is small, there is a range of frequen-
cies in which two different stable b are possible. The ampli-
tude at which the bridge vibrates in this range depends on the
direction of approach. The amplitude equation derived by
Nicolas and Vega for the �2,0� mode also predicts hysteresis,
Eq. �4.12� of Ref. �9�. It may be recast as Eq. �3� by grouping
the parameters appropriately. In that analysis, however, 	 is
modified to include weak aspects of inertia and damping
neglected in �3�. We include the most significant of those
corrections by obtaining �3 with a fitting procedure.

For the �5,0� mode, the restoring force obtained from Eq.
�1� is

Fy = − k5y − �35x
3. �4�

When the �3,0� mode is driven at frequency �, from the
identity 4 cos3 �t=cos 3� t+3 cos �t, there will be a third
harmonic response in the �5,0� mode amplitude y and that
response is proportional to b3. In our experiment we have
selected S such that the radian frequency �5 of the �5,0�
mode of an inviscid bridge is �3�3. This was done to en-
hance the magnitude of y. We find from Ref. �4� that for an
inviscid bridge, the condition �5=3�3 gives S=2.682. To
promote mode conversion this condition need not be satisfied
exactly because the �5,0� resonance is relatively broad. Man-
cebo et al. �10� give other conditions for enhancing mode
conversion by selecting S such that various �n differ by fac-
tors of 2.

This Plateau tank was previously used to investigate ac-
tive damping of the �2,0� mode �12�. The liquids were se-
lected such that the kinematic viscosities �i and �o of the
bridge and bath liquids are small �0.62 cS and 0.77 cS�. The
bridge liquid �an aqueous solution of 52 wt. % CsCl� is elec-

trically conducting and is grounded. The bath liquid �HFE-
7500 from 3M� is an electrical insulator. The disk radius R is
3.18 mm and the Ohnesorge number �a reciprocal of a Rey-
nolds number� is small, C=�i� /�R�1/2=0.0024 where 
=1.61 g/cm3 and �=33.6 dyn/cm is the interfacial tension.
Potentials are applied to an array of annular disk electrodes
in such a way that the modal Maxwell stress on a cylindrical
bridge has a sinusoidal time dependence of frequency f
=� /2�. This is facilitated with an analog square-root circuit
and related components �11,12�. Our previous electrode con-
figuration �12� was modified to favor the excitation of the
�3,0� mode. This was achieved by using three electrodes. At
the middle of the bridge is an electrode of inner radius a1
=7.4 mm. An electrode is placed at L /6 from each end hav-
ing an inner radius a2=9.1 mm. The dimensions were se-
lected in such a way that the gap ratio �a2−R� / �a1−R�
� �2 so that for electrode potentials of the same magnitude,
the Maxwell stress from the middle electrode is approxi-
mately twice that from either outer electrode. The ratio a2 /R
was selected in such a way that the Maxwell stress distribu-
tion associated with a single electrode couples effectively to
the mode of interest �11�. The time dependence of potentials
is the special case of “no feedback” for our previously de-
scribed system �11,16�. The middle electrode is activated
�grounded� when the outer two are grounded �activated�. The
peak electrode voltage is 900 V. The electric field at the
bridge’s surface near an activated electrode is proportional to
��cos �t� giving a local stress proportional to �cos �t�. By
activating or grounding electrodes only when the field van-
ishes, the modal force is proportional to cos �t as in Eq. �2�
�11�. To change � without disturbing the bridge dynamics,
the input to the square-root circuit was synthesized to be
proportional to cos���t�� where � is an increasing continuous
function of time with d� /dt bounded by the initial and final
� of each transition.

The response of the bridge is measured over the range
4.0 Hz to 3.3 Hz by first incrementally decreasing the drive
frequency f and waiting 60 s for the bridge oscillations to
achieve steady amplitude. The magnitude of the potential
oscillations applied to the electrodes is held fixed. Then the
oscillations are recorded with a 200 frames/s digital video
camera and f is decreased to the next value. Larger incre-
ments were selected away from the �3,0� resonance so as to
minimize drift of the bridge properties by reducing the
amount of time required to complete the scan. This is fol-
lowed immediately by an upward scan in which the same
frequency set is used. During the downward scan the re-
sponse initially increases, followed by an abrupt decrease,
and then a gradual decrease. During the upward scan there is
a sudden upward jump in the response at a frequency above
that of the aforementioned downward jump. These are the
features expected of a system with mode-softening hysteresis
�9,17–20�. Figures 2 and 3 show image sequences of bridge
oscillations obtained in this way with f =3.51 Hz during the
downward and upward sweeps, respectively. The amplitude
in Fig. 3 is significantly smaller than in Fig. 2. The bridge
volume was 0.99 �R2L with S=L /2R=2.71.

For each f the modal response was obtained by analyzing
600 recorded images �512�216 pixels�. Let z denote the
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axial coordinate of the bridge. For the image recorded at time
t of a given sequence, the local diameter d�z , t� was ex-
panded using basis functions Fn�z�

d�z,t�/2 = r0 + �
n=2

11

cn�t�Fn�z� , �5�

where the Fn�z� are proportional to the mode shape functions
of Sanz �4�, normalized so that for each n the maximum
Fn=1. For odd n, Fn=1 at the center of the bridge. The cn�t�
and r0 were determined by minimizing the rms error and r0
has the same value for each sequence; cn�t� were expanded
as an0+an1 cos��t+�n1�+an2 cos�2�t+�n2�+an3 cos�3�t
+�n3�, �=2�f , to obtain the dominant spectral components.
The anj and �nj were determined by minimizing the rms
error. The bridge response was predominantly from the a31
term as suggested by comparison of Figs. 2 and 3 with Fig.
1. The measures used for the spectral components of x�t� and
y�t� at f and 3f are b=a31 and Y =a53, respectively. The re-
sulting values of b /R and Y /R are plotted as points in Figs. 4
and 5. The measured b and Y exhibit hysteresis for f of 3.50,
3.51, and 3.52 Hz.

Measured b /R were compared with the predictions of the
lumped-parameter model, Eq. �3�. It was necessary to use

fitted parameters because there is no complete hydrodynamic
model of Plateau tank bridges, even in the linearized case.
This approach is used although some related two-liquid
problems have been analyzed using the full Navier-Stokes
equations �21�. The approach used here avoids complications
associated with oscillating boundary layers close to the
bridge and perturbations in the flow of the outer liquid re-
sulting from flow around the electrodes. The four parameters
are �3=2�f3, �, 
, and fE. The curve in Fig. 4 is given by
adjusting these parameters to minimize the error. The param-
eters give f3=3.800 Hz, �=0.842 s−1, 
 /R2=−1792 s−2, and

FIG. 2. Picture sequence of the bridge oscillations at a steady
frequency f of 3.51 Hz. This f was approached from above.

FIG. 3. Picture sequence of the bridge oscillations at a steady
frequency f of 3.51 Hz. This f was approached from below. The
amplitude is lower than in Fig. 2.

FIG. 4. Response of the bridge �3,0� mode at the driving fre-
quency f . The oscillation amplitude is normalized with respect to
the bridge radius R. Solid circles are measured for the downward
scan when the driving frequency is incremented from 4.0 Hz to
3.3 Hz. Open triangles are the upward scan results when the fre-
quency is incremented from 3.3 Hz to 4.0 Hz. The curve is a
lumped parameter model, Eq. �3�, with a four-parameter fit. The
dotted lines and the associated arrows show the observed sudden
transitions.

FIG. 5. Response of the bridge �5,0� mode at frequency 3f plot-
ted as a function of f for the scans shown in Fig. 4. The oscillation
amplitude is normalized with respect to R. Solid circles are mea-
sured for the downward scan. Open triangles are from the upward
scan. The curve is a lumped parameter model, Eq. �6�, that uses two
additional fitted parameters. The dotted lines and the associated
arrows show the observed sudden transitions.
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fE /R=12.51 s−2. The model recovers the abrupt transitions
in the hysteretic region. The assumption in Eq. �2� that Y
�b is consistent with our observations.

Two additional parameters are needed to model the �5,0�
mode amplitude. These are the �5,0� mode damping �5 and a
normalized coupling �=�35/M5 where M5 is a modal mass.
Restricting attention to the response at 3� from the coupling
term in Eq. �4� gives

Y = �b3���/8�5�/ � ��5
2 + ��5 − 3��2� , �6�

where �5=3�3 and a small resonance shift of order ��5 /�5�2

is neglected as in Eq. �26.7� of Ref. �20�. The curve in Fig. 5
is given by taking b from the curve in Fig. 4 and using fitted
values of ��� and �5. The fit gives �5=3.96 s−1 and
�� �R2 /�5=54.39. Again the model recovers the abrupt tran-
sitions in the hysteretic region. Compared to the peak ampli-
tude, the transitions are larger than in Fig. 4 because of the
dependence on b3. Attempts were unsuccessful to explain
this behavior by mechanisms resulting from the weak modu-
lation of the Maxwell stress associated with �3,0� mode os-
cillations since the resulting contributions to Y scale in a way
inconsistent with observations. The enhanced spread in the
measurements in Fig. 5 when f �3.6 Hz may be only par-
tially associated with variations in the measured b and the b3

scaling. Small drifts in the properties of the �5,0� mode may
also be relevant. Attempts to reduce the drifts in measure-
ments of b and Y to below the range shown in Figs. 4 and 5
were unsuccessful. Profiles of the static bridge prior to
and following the scans indicate that the Bond number

B= �i−o�gR2 /� �where g=9.8 m/s2� had drifted from
−0.007 to 0.004 at the end. This drift appears to be associ-
ated with prolonged large amplitude bridge excitation. The
hysteresis was verified for several different bridges and was
not caused by the drift in B.

The observations in Fig. 4 suggest that liquid bridges sub-
jected to sufficiently narrow-bandwidth ambient vibrations
may exhibit hysteresis if the damping is small and the vibra-
tion amplitude is large. Mancebo et al. �10� predict that mode
coupling from �and to� the �6,0� mode of weakly damped
bridges having a slenderness S�2.23 can result in chaotic
oscillations. Though we find no evidence of chaotic motion
in bridges with S=2.71, our observations of hysteresis and
mode coupling are suggestive that chaotic oscillations are
plausible if other modes and a wide range of excitation con-
ditions could be investigated. In addition to the x3y contribu-
tion to the potential energy U, where x�t� and y�t� corre-
spond, respectively, to the instantaneous amplitudes of the
�3,0� and �5,0� modes, it is plausible that the conversion to
the �5,0� mode at the third harmonic of the excitation may be
influenced by advective nonlinearities not considered here. It
is also plausible that weakly nonlinear hysteretic and mode
coupling responses of other capillary systems may be de-
scribable by elementary lumped parameter models, however
the selection of the relevant contributions to the potential
energy will depend on the symmetry and boundary condi-
tions of the specific system.
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